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Abstract

A method based on complex potentials for distributions of dislocations along curved cracks is used to solve multiple
curved crack problems in plane elasticity. The method allows evaluation of the interaction between curved cracks. A
crack problem is reduced to a system of singular integral equations and the crack curve length is taken as the coordinate
in the associated integral equations. A crack is then mapped on the real axis in an interval (—a, a), where 2a is the length
of crack and the original singular integral equations are transformed accordingly. The method allows cracks with a
general curvature and is not restricted to slightly curved crack configurations. The resulting singular integral equation
system is solved through Gauss quadrature. A few numerical examples of problems with two cracks are given and crack
interaction, i.e., the shielding effect of a curved crack surrounding by another, is also studied.
© 2004 Published by Elsevier Ltd.
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1. Introduction

The curved crack problem in plane elasticity is a special case of problems that are solvable with the
boundary integral equations (BIE). The integral equations for such a problem contain a dislocation dis-
tribution or a dislocation doublet along a curved crack path and may be expressed in the general form

AKMMNOw=MM7(MMM+amEU, 0

where f'(¢) is the unknown function, K(¢,t) the kernel, and p(¢) the right hand term in the equation. In Eq.
(1), “L” represents the crack curve configuration. Clearly, the nature of the kernel K(z, #y) depends on the
explicit choice of the functions f(¢) and p(#). The possible choices of f(¢) and p(#) are listed in Table 1.

In the case of WS (weakly singular) integral equations, the dislocation distribution is taken as the un-
known function, and the resultant force as the right hand term (Cheung and Chen, 1987). The explicit
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Table 1
Classification of the integral equations in curved crack problem
Type 1) plto) Property of K(t,1)
(a) WS Dislocations Resultant forces Weakly singular (log singular)
(b) S1 Dislocations Tractions Cauchy singular
(c) S2 Displacement jump (COD) Resultant forces Cauchy singular
(d) HS Displacement jump (COD) Tractions Hypersingular

solution of the integral equation, whose kernel is logarithmic, is unknown, but it can however be solved
numerically with the boundary element method.

In the case of S1 (Cauchy singular) integral equations, the dislocation distribution is taken as the un-
known function, and the traction applied on the crack face as the right hand term. Many researchers have
studied this case (Savruk, 1981; Chen et al., 1991) and some have used perturbation methods to solve the
problem (Cotterell and Rice, 1980; Dreilich and Gross, 1985; Martin, 2000). In general, the range of
application of previously obtained solutions for the curved crack problem is however not satisfactory. For
example, in the perturbation method, a curved crack is generally projected on the real axis. Clearly, this
formulation is only valid for slightly curved cracks. However, for complicated multiple crack cases, this
assumption is no longer valid.

For the type S2 (Cauchy singular) integral equations, the displacement jump is the unknown function,
and the resultant force on the crack face is the right hand term (Chen, 1999). There is no known explicit
integration rule for the singular integral [, gt(i)tf’, where both “#”” and “#,” are located on the curve “L”, and
the numerical solution for a singular integral equation of this type is complicated.

For the type HS (hypersingular) integral equations, the displacement jump is taken as the unknown
function and the traction on the crack face as the right hand term (Chen, 1993; Lin’kov, 1999; Mogi-
levskaya, 2000). Generally, the integration rule for the hypersingular integral along a curve is rather
complicated.

In this paper, we will discuss the numerical solutions for the multiple curved crack problems. After
placing some dislocation distributions along the curved cracks, relevant complex potentials can be for-
mulated. In addition, the mutual influence between the curved cracks can be achieved from the obtained
complex potentials. Instead of solving the original multiple curved crack problem, the governing equations
are transformed to a system of the singular integral equations of the S1 type. A new method for cracks of

T z+dz 1

Fig. 1. The curved crack configuration and the curve length coordinate.
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general curvature that is not restricted to slightly curved cracks is developed. The crack length is taken as
the coordinate along the crack and the crack configuration is mapped on a real axis in an interval (—a,a)
(Fig. 1). The proposed method is called the ‘curve length method’ hereafter. A striking advantage of the
method is that the integral defined on a curve can be converted to a relevant integral defined on the real
axis. Therefore, known integration rules can be used for problem solution. Finally, several numerical
examples are given to illustrate the efficiency of the method presented.

2. Singular integral equation for multiple curved crack problems

The fundamentals of the complex variable function method, which plays an important role in plane
elasticity, are briefly introduced in what follows. In the method, the stresses (o, gy, 65,), the resultant forces
(X, Y) and the displacements (u, v) are expressed in terms of the complex potentials ¢(z) and y(z) such that
(Muskhelishvili, 1953)

o, +0, =4 Red(2),

o, — oy, = 2Re @(z) + z9'(z) + P (2), (2)
[ ==Y +iX = ¢(2) +20'(2) + Y (2), 3)
2G(u +iv) = k(z) — 2 (2) — ¥ (), )

where G is the shear modulus of elasticity, x = (3 — v)/(1 4 v) in the plane stress problem, xk = 3 — 4v in the
plane strain problem, and v is the Poisson’s ratio. In Eq. (2) we denote @(z) = ¢'(z), ¥(z) = ¥/(z).

If the tractions applied on the curved crack are the same in magnitude and opposite in direction for the
upper and lower crack faces, the complex potentials caused by a dislocation distribution g'(¢) along the
curved crack “L” can be expressed by (Savruk, 1981; Chen, 1995)

O(2) = ¢/(z) = - / AU

_Z t—z

L [EDd 1 "o
R R e Tt 5)
where
gl =25 O TR0} gy (©

K+1 dt ’

In Eq. (6), (u(?) +1iv(2)),(= (u(t) + iv(¢))" — (u(t) 4+ iv(f))”) stands for the jump value of the displacements,
and (u(t) +1iv(2)) " ((u(t) +1iv(¢)) ) denotes the displacements at a point “#” of the upper (lower) face of the
crack “L” (Fig. 1). The derivative d{ }/d¢ is defined (as a derivative) in a specified direction (DISD) (Chen,
1995).

Clearly, from the single-valuedness condition of displacements, the following constraint equation is
obtained

/Lg’(t) dr =0. (7)
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Two cases for the traction influence of the distributed dislocation will be investigated below. The first case is
the traction influence on the crack faces themselves (Fig. 1). According to Savruk (1981) and Chen (1995),
the traction on a point ¢, of crack face is

. 1 _
N(t°)+1T(t°):E/L Pa— 2n/K1tt0 dt+—/K2tt0 g()di, (6 €L), (8)

where “L” denotes the curved crack configuration and

d ty —t 1 1 df
1(t,00) = dto{ to—t} T w ishdy

d (t—1t 1 t—1t di
Ky(t,t = -—.
2(ffo) = dm{o—t} f—ly (-1 dty

In Eq. (9) the expression d{ } /dz, should be defined as a DISD-derivative. Clearly, only the first integral
in Eq. (8) is singular. Secondly, after assuming d#, = dso exp(ify) in Fig. 1, we have d7,/d#y = exp(—2i0,).
Therefore, the second and the third integrals in Eq. (8) also depend on the direction of the segment
to, to + ds.

Simply by making the following substitutions: (a) #yp — z, (b) dfy — dz in Egs. (8) and (9), the traction
influence at a point “z” on the segment z,z 4+ dz in Fig. 1 can be expressed as

N@+ﬁ@:%£t_z /m w+—/mzZ

(at a point “z” on the segment z,z + dz, Fig. 1), (10)

©)

where “L” denotes the curved crack configuration and

1 1 dz

kb=t e
1 t—z dz (1)

o) = e

9

When the integration for ““#” is performed along the curve “L” in Eq. (10), the observation point “z” is
different from the point “#’, and thus, all integrals in Eq. (10) are regular. Note that, in Eq. (11)
dz/dz(= exp(—2ix)) denotes a DISD-derivative rather than a derivative of an analytic function (Fig. 1).

For a single curved crack case, once the solution for g'(¢) is obtained from Egs. (7) and (8), the stress
intensity factor (SIF) at the left crack tip B in Fig. 1 can be evaluated by (Savruk, 1981; Chen, 1995)

(Ki = iK2), = V2nLim/[r = 13]g/(1). (12)

Similarly, for the right crack tip C we have
(K1 — 1K) = —vzn];i?n |t —tclg(¢). (13)
—lc

Let us consider the case of two curved cracks (Fig. 2). The problem, where tractions on the crack faces
are given can be modeled by assuming a dislocation distribution g/ (#) along the curved crack-1 and g5(#)
along the curved crack-2 and using superposition. The tractions on the crack-1 are composed of two parts,
which are derived from the dislocation distributions. The first part is obtained from the dislocation dis-
tribution g/ (#,) along the curved crack-1, using Eq. (8). The second part is obtained from the dislocation
distribution g5(#,) along the curved crack-2, using Eq. (10).
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Fig. 2. Formulation of multiple curved crack problem.

Finally, superposition of the two parts results in a singular integral equation for crack-1 as follows

1 1(f)de 1 , 1 1 5 (t2) dt
_ / &4_— / Kl (f17f10)g1(11)d11 +2— / Kz(tl,flo)g/l(tl)dtl + — / w
L L T T JL,

i t—ty 2m L h — to
1 1 _ .
T3 / Ki(t2, 110)g5(t2) Aty o / K> (12, 110)85(12) Atz = Ni(ti0) +1T1 (1) (f10 € L1), (14)
Ly Ly

where N (t10) + 17} (¢10) denotes the tractions applied at the point ¢ of crack-1, and
1 1 dfy 1 t —to df

Ki(t,t10) = — ——, Kt =, 15
( ) hh—to 14—t diy ( ) h—to (4 — tm)2 dtyo (15)

1 1 dflO 1 h — 1ty dil()
Ki(t,ti0) = — ", K(tty)=——————— —. 16
( ) b —to b —typ dhy ( ) h—to (h— t10)2 dtyo (16)

Note that, the first three integrals in Eq. (14) represent the influence on the crack-1 caused by the dislo-
cations on the crack itself, and the second three integrals in Eq. (14) represent the influence from the
dislocations on crack-2. Note that, except for the first integral in Eq. (14), all integrals in Eq. (14) are
regular. In addition, the single-valuedness condition for crack-1 will lead to

/ g,(tl)dtl =0. (17)
Ly
Similarly, a singular integral equation can be formulated for the crack-2 in Fig. 2

1 g/z(tz) dtz 1 / ’ 1 / — - 1 / gll (ll)dll

— —_—t — Ki(t,t t)de — Ky(t,t (ty) dt — —_

- /L2 tr — b +27r A 1(t2,120)85(12) 2+27r A 2(t2, 120)85(12) 2+n pr——

1 1 — .
t5. / Ki(t1,t0)g) (t) dty + = / Ky(t1,t0)g1 (1) dty = Na(t) +1Ta(t0),  (t0 € La), (18)
Ly Ly

where N, (ty) + 1T>(t2) denotes the tractions applied at the point # of crack-2, and

1 1 djgo 1 th — 1ty dZZO

— = Ki(th,ty) == -
h—ty b —bhydhy’ 2(t2, 1)

Ki(t, 1) = — = —
(£2: 1) Ih—to (fh— t20)2 dry’

(19)
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1 1 diy 1 t —ty diy
= -— ), Kz(f],tz()) — — — > 7, -
i —hy 1 — by diy h—tbo (f) —ty) dio

Ki(t1,t0) = — (20)

As before, the relevant constraint equation is as follows
/ g/<t2) dtz =0. (21)
Ly

In the case of two curved cracks, the first step is to obtain the solution for g (#) and g5(#,) from Egs. (14),
(17), (18) and (21).

The curve length method is used to solve the integral equations numerically and the configuration of
crack-1 is mapped on the real axis “s;” with a crack length “2q;” (Fig. 2). Clearly, this is a one-to-one
mapping, i.e., for a point “# " on the curved crack, there is a mapping point “s;” on the real axis, and the
inverse is also true.

The mapping is expressed by the function # (s;). After mapping, the function gj(z) is rewritten in the
form

() = nlst) =5 (where Hy(s1) = Hi(or) + ifl(s1)). 22)

ap — 81

In Eq. (22), the assumed expression & (s;) = H;(s1)/+/a3 — s? is obtained from the behavior of the dislo-
cation distribution in the vicinity of a crack tip.
Similar, after using the substitution #(s,), the function g)(#,) can be rewritten as

H(s2)
Vai =53
In the curve length method, all integrals in Eqs. (14), (17), (18) and (21) can be transformed to integrals on

the real axis. It is sufficient to describe three of them as follows. The first integral in Eq. (14) may be
rewritten in the form

g’z(tz) = hz(Sz) = (Where Hz(Sz) = Hzr(Sz) =+ iHZi(S2))- (23)

1 (h)dy 1 [ H A
I :_/ gin)dn 1 1(s1)  A(s1,510) ds,. (24)
T, =t W) 4 yJai—st S1— 5w
where
(S1 — Sl())dtl
A =—F—. 25
(51, 510) (ti — tio)dsy (25)
The second integral in Eq. (14) can be written as
1 1 [ Hs
I, 22—/ Ki(t1,t0)g) (1) dy = 1( l B(sy,s10)dsi, (26)
T L — Sl
where
dt
B(s1,810) = Kl(tlvtlo)d_l (27)
S
Thirdly, the integral in Eq. (17) can be expressed by
ay H
L :/ g (t)dy = 1<S1) C(s1)dsi, (28)
L — 57



Y.Z. Chen | International Journal of Solids and Structures 41 (2004) 3505-3519 3511

where

dy,

C
(s1) = &

For numerical solution of the integral equation, the following Gauss integration rules for a regular function
H(s) are introduced (Erdogan et al., 1973; Savruk, 1981)

s)ds _ 1 if: H_(sj) 7 (30)

(29)

1 [* H(s)ds 1 ¥
2z =—N"H(s), 31
| = MZ (5) S
where M is some integer, and
i —0.5
sj:acosu 021727""M)7 (32)
M
so,m:acos% (m=1,2,....M—1). (33)

Note that, the integration rule (30) is only valid for the particular points s, = acos(mn/M) (m
,2,...,M—1).

If the H(s;) (j=1,2,...,M) values are known beforehand, the H(—a) and H(a) values can be obtained
from the following extrapolation formulae (Savruk, 1981)

H(—a) =3 (1™ H(s) tan((2) — 1)/4M),
1 e (34)
H(a) = MZ(—U-"“H(S},) cot((2j — 1)m/4M).

=1
The numerical solution for the multiple curved crack problems is composed of the following steps.

(a) Depending on the crack lengths, M is assumed for the number of abscissas for crack-1. Similarly, M, is
assumed for crack-2.

(b) After substituting Egs. (22) and (23) into Eqgs. (14), (17), (18) and (21), and using the integration rules
(30) and (31), the latter can be reduced to a system of algebraic equations with respect to the following

unknowns
. (m—0.5)n
Re{Hl(sl,m)}Im{Hl(sl,m)} Wlth Sl,m =a, COSiM (m = 1,2,. ,Ml),
1
(35)
Re{Hs(s2n) HM{H>(52,,)} With 52, = a» cos(mjwﬂ (m=1,2,...,M).
2

Furthermore, a solution for H (s, ,,) (m=1,2,...,M;) and Hy(s2,,) (m = 1,2,...,M,) is obtainable.
(c) From the obtained H,(s,,) and Hs(s2,), the extrapolation formulae Eq. (34) yield H,(—ay), H(a;),
Hz(*dz) and Hz(az).
(d) From Egs. (12) and (13), the stress intensity factor (SIF) at the crack tips B; and C, of crack-1 in Fig. 2
can be evaluated by

\/7H1 (11 K1 1K2 \/>H1 (11 (36)
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Similarly, the stress intensity factor (SIF) at the crack tips B, and C, of crack-2 in Fig. 2 can be evaluated
by

(K1 =ik, = [Ti(an). (K =ik, = = [Zttlan) a7

For the circular arc crack case, for example, under the action of remote the stress ¢2° the COD (crack
opening displacement) may be negative for certain values, indicating overlapping of the crack faces.
Naturally, in this case, compatibility is violated. In this paper, a non-overlapping condition in terms of
COD is introduced. For a curved crack case, once the function g’(¢) is obtained from the numerical
solution, the COD function at a point “¢”’, Fig. 1, can be obtained from Eq. (6)

u(t)-l—iv(t):—(Kz—gil) / (1) dr. (38)

Note that in Eq. (38) the subscript ““;”” has been omitted for the sake of simplification. A further expression
for COD is introduced

i (1) + vy (¢) = (u(t) +iv(t))e 0, (39)

where 0(¢) denotes the tangent angle at the point “#” (Fig. 1). Clearly, the non-overlapping condition for
COD can be expressed as

U1(l) = 0. (40)

This condition is checked in the numerical examples.

Fig. 3. Five cases of multiple curved crack: (a) two circular arc cracks on the same circle, (b) two circular arc cracks in a stacked
position, (¢) two circular arc cracks in a complicated position, (d) two line-circular arc cracks, (e) two circular arc cracks with an
inclined remote tension.
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Before studying the numerical examples, a known result is used. For a single circular arc crack with the
remote traction case of 67°, o° and a7y, the SIFs at the crack tips “4” and “B” in Fig. 3(e) can be expressed
by (Cotterell and Rice, 1980)

K]A :flA\/ﬂfRSil’lf)(7 K[B :flg\/TCRSinOC, (41)
Koy = fouVmRsina, Kz = frpV R sina, (42)
where

fu [(EEN (e L cos(e/2)
le_{( 2 ) < 2 >Sm(/2)cos(/2)}1+Sin2(a/2)

n {@}cos@a/z) T 02 {sin(32/2) + sin’(2/2)}, (43)
Soa _ o, +a7° _ 0 — 07\ . 2 o 2y sin(o/2)
S i{( 2 ) ( 2 > sin’(/2) cos’( /2)} 1 + sin’(2/2)

+ {M} sin(3a/2) + o7, {cos(30/2) + cos(x/2) sin’(a/2)}. (44)

3. Numerical examples
Some numerical examples are given to illustrate the results of the method presented.

Example 1. In the first example, two circular arc cracks on the same circle are subjected to the remote
tension o° = ¢)° = p (Fig. 3(a)). In the computation, M; = M, =45 in Eq. (35) is used. The calculated
results for the SIFs at the crack tips “4” and “B” are expressed as

Ky = Fy(a/B, B)pVaRsina, Ky = Fou(a/p, f)pV R sina,

45
KIB :EB(OC//)),[)))pV 7'l71?Si1’lO(7 K2B :szg(d/ﬁ,ﬁ)p\/ 7R sin o ( )

and are plotted in Figs. 4 and 5. The results show that the stress intensity factor at the inner crack tip “B” is
generally higher than at the outer crack tip “A”. For example, in the case of = 30° and «/f = 0.9, the
results F, = 0.8919 and Fiz = 1.2424 is obtained.

Example 2. In the second example, two stacked circular cracks are subjected to the remote tension
0 = o = p (Fig. 3(b)). In the computation, M, = M, = 75 in Eq. (35) is used. The calculated results for

X

the SIFs at the crack tips “B” and “D” are expressed as

Kig = Fip(h/2R,a)pVnRsina, Ky = Fp(h/2R,o)pVnRsin o,

(46)
Kip = Fip(h/2R,0)pVrRsina, Kyp = Fp(h/2R,a)pV R sin o

and are plotted in Fig. 6. Since there is no symmetry in the y-direction, the severity at the crack tip “D” is
different from that at the tip “B”. For example, in the case of o =n/2 and h/2R = 0.2, we have
Fip =0.5728, Fop = 0.4409 and Fiz = 0.1463, F>3 = 0.0685. That is to say, crack extension is generally
initiated at the crack tip “D”. If the distance between the two cracks is increased, the difference between the
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1.4

1.2 1 B =30° .

0.8 1

0.6 1

Nondimensional stress intensity factor

0.4 — T T T T T T 1T T T T
00 01 02 03 04 05 06 07 08 09
o/B

Fig. 4. Non-dimensional SIFs Fi,(«/f, ) and Fiz(o/f, ) for the multiple curved cracks (see Fig. 3(a) and Eq. (45)).

-0.1 1
-0.2 1

-0.3 1

Nondimensional stress intensity factor

00 01 02 03 04 05 06 07 08 09
Fig. 5. Non-dimensional SIFs Fy,(a/f, ) Kos = Fap(a/f, ) for the multiple curved cracks (see Fig. 3(a) and Eq. (45)).

stress intensity factors at the crack tips “D” and “B”’, respectively, is smaller. For example, in the case of
o =mn/2 and h/2R = 1.0, we have Fip = 0.5653, Fop = 0.4319 and Fi3 = 0.5377, F53 = 0.3631.

Example 3. In the third example, two circular arc cracks are subjected to the remote tension 63° = o3° =p
(Fig. 3(c)). The spanning angle of the first crack is /3, and of the second is 2¢. In the computation, we take
M, =35, M, = M, x \/ay/a,, where a; (a») is the half-length of the first (second) crack. The calculated
results for the SIFs at the crack tips “4”, “B”, “C” and “D” are expressed as

Ky = Fii(a)p\/nRsin(n/6), Kay = Foy(a)pr/7R sin(n/6),

Kip = Fis(o)p\/nR sin(n/6), Koy = Fog(e)p\/7R sin(n/6), )
Kic = Fic(@)pVaRsina, K = Fac(a)py/nRsin o,

Kip = Fip(a)pVaRsina, Ky = Fp(a)pVaR sina
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Nondimensional stress intensity factor

0.1+

0.0 T T T T T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

h/2R

Fig. 6. Non-dimensional SIFs Fiz(h/2R, o), Fap(h/2R, o), Fip(h/2R,a) and Fp(h/2R, o) for the multiple curved cracks (see Fig. 3(b)
and Eq. (46)).

and the results are plotted in Fig. 7. Since the spanning angle of the second crack (2u) is varied, the
shielding effect for the first crack is easily seen. For example, in the case of o« = n/18 (=10°), we have
Fiy =0.9078, F>, = —0.2518, Fi3 = 0.9145 and F>3 = 0.2692. However, in the case of o = 7n/18 (=70°), we
have Fi, = 0.7470, F>, = —0.4642, Fiz = 0.1248 and F>3 = 0.1935. For the two cases, the reduction factor
for Fip is 0.1365 (=0.1248/0.9145). The result shows that as a smaller curved crack is surrounded by a
larger curved crack, the severity at the crack tips of the smaller crack is not significant.

Example 4. In the fourth example, two line-circular arc cracks are subjected to the remote tension
o* =0 = p (Fig. 3(d)). The geometry of the first crack is kept constant, and the spanning angle o of the

X

second crack changes from 15°,30°,...,180°. In the computation, we take M, = 35, M, = M, *x \/a,/ay,
where a; (a) is the half-length of the first (second) crack. The calculated results for the SIFs at the crack
tips “4”,“B”, “C” and “D” are expressed as

0.8
064
0.4
0.2-
0.0
021

-0.4-

Nondimensional stress intensity factor

0 10 20 30 40 50 60 70 80 90
o (degree)

Fig. 7. Non-dimensional SIFs Fi,(a), Foy(a), Fig(®), Fos(a), Fic(a), Foc(a), Fip(x) and Fp(o) for the multiple curved cracks (see
Fig. 3(c) and Eq. (47)).
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Ky = Fu(a)pVab, Ky = Fu(a)p
Kz = F']B(O()p\/ TEb, Ky = FVZB(O()p
KIC = ﬂc(a)pv be, K2C = BC(a)p

Kip = Fip(a)pVnb, K>p = Fop(a)pV b

bl

and the results are plotted in Fig. 8. Since the spanning angle of the second crack («) is varied, the shielding
effect for the first crack is easily seen. However, the Fj value is negative for a spanning angle greater than
approximately o = 67/12 (=90°) and the solution is thus no longer valid in this case. For positive SIFs, it is
seen that the shielding effect at the crack tip “4” is much weaker than that at the crack tip “B”.

Example 5. In the example, we assume that the spanning angle of the arcs is 2o = 7/2 (=90°) (Fig. 3(e)) the
distance between the two arc centers is denoted by “4”’, and M|, = M, = 75 is taken. Two loading cases: (a)
0y’ =0 =p, (b) 6)° = p are considered. For both cases the calculated SIFs at the crack tip “4 ™ are

ekpressed by
Ky =F4(h/2R)pVrRsina, Ky = Fyy(h/2R)pV nRsina. (49)

The calculated results of Fi,(h/2R) and F>4(h/2R) for h/2R = 1.5,2.0,...,5.5,10* are listed in Table 2. The
last term marked with “x” in Table 2 is obtained from Egs. (43) and (44). As expected, when 4/2R — oo,
the calculated results should approach the single circular arc crack case. This agreement is confirmed by the
tabulated results.

With #/2R = 1.5, 200 = /2 and o =p, for the lower crack in Fig. 3(e) the calculated COD functions
shown by Eq. (39) can be expressed as

(k+1)p
2G

(k+ )p

u = uy * (s/a), v = G vi+(s/a) |s| < a (with a = Ra), (50)

9

where “s” is the coordinate of the point “#” in the curve length coordinate. The results (Fig. 9) shows that
the non-overlapping condition Eq. (40), is satisfied in present case.

Nondimensional stress intensity factor

0 30 60 90 120 150 180
o (degree)

Fig. 8. Non-dimensional SIFs Fi4(«), Fas(a), Fig(a), Fag(a), Fic(), Fac(a), Fip(a) and Fp(a) for the multiple curved cracks (see
Fig. 3(d) and Eq. (48)).
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Table 2
Non-dimensional SIFs F4(%/2R) and F,(h/2R) for two circular arc cracks in a stacked position (see Fig. 3(e) and Eq. (49))

0¥ =0 =p, 20=7/2 case

h/2R 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 104 *

Fiy 0.7876 0.7890 0.7933 0.7967 0.7990 0.8006 0.8017 0.8026 0.8032  0.8060 0.8059
Py 0.2294 0.2763 0.2997 0.3117 0.3185 0.3227 0.3254 0.3272 0.3285 0.3339 0.3338
o =p, 20 = 7/2 case

h/2R 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 104 *

Fiu 0.5225 0.5247 0.5298 0.5337 0.5364 0.5381 0.5394 0.5403 0. 5410 0.5440 0.5439
Fy 0.4987 0.5467 0.5717 0.5847 0.5919 0.5963 0.5992 0.6011 0. 6025 0.6081 0.6080

“From an exact solution for a single circular arc crack, shown by Eqs. (43) and (44).

o
(2}
Il

o
i
1

Crack opening displacement
o o
2 e

h/2R=15

-0.2 T T T T T T T T T T T 'I'I |
-1.0 -08 06 -04 -02 00 02 04 06 08 1.0
s/a

Fig. 9. Calculated results for CODs (ui., vi.) in case of /2R = 1.5, 20 = /2 and ¢}° = p (see Fig. 3(e) and and Eq. (50)).

Table 3
Non-dimensional SIFs Fi,(h/2R), Fiz(h/2R), Fo4(h/2R) and Fyz(h/2R) for two circular arc cracks in a stacked position with an inclined
tension “p” (see Fig. 3(e) and Egs. (51) and (52))

20=m/3, f=mn/12

h/2R 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 104 -

Fiy 0.4709 0.5140 0.5315 0.5397 0.5441 0.5466 0.5482 0.5493 0.5501 0.5532 0.5532
Fip 0.8791 0.8910  0.9005  0.9057  0.9087 09105 09116  0.9124 09130 09154  0.9154
by 0.5265 0.5797 0.5970 0.6040 0.6075 0.6094 0.6106 0.6113 0.6119 0.6138 0.6139
Fp -0.1413  -0.1894 —-0.2079 -0.2159 -0.2200 -0.2224 -0.2238 -0.2248 —0.2254 -0.2280 —0.2280
20=m/3, p=3n/12

h/2R 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0 5.5 104 -

Fiy 0.0138 0.0591 0.0741 0.0806 0.0839 0.0858 0.0870 0.0877 0.0883 0.0904 0.0904
Fip 0.8302  0.8133 08122  0.8126  0.8131 0.8135  0.8137 08139  0.8141 0.8148  0.8149
by 0.4617 0.4928 0.5007 0.5036 0.5050 0.5057 0.5061 0.5064 0.5065 0.5072 0.5072
Fp 0.3087  0.2879 02774  0.2725 02699  0.2684  0.2674  0.2668  0.2663  0.2646  0.2646

*From an exact solution for a single circular arc crack, shown by Eqs. (43) and (44).

Example 6. In the example, we assume that the spanning angle of the arcs is 2o = /3 (= 60°) (Fig. 3(e)) the

e 9

distance between two arc centers is denoted by “4”’, and M, = M, = 75 is taken. The remote loading “p” is
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inclined an angle “f”” with respect to the vertical direction. In this case, the calculated SIFs at the crack tip
“A” and “B” are expressed by

Ky =F4(h/2R)pVrRsina, Ky = Fy(h/2R)pVaRsina, (51)
KIB :Eg(h/zR)pV ﬂRSiHOC, KZB :Fzg(h/2R)p\/ 7R sin o (52)

and the results of Fi4(h/2R), Fi3(h/2R), Fo4(h/2R) and Fyz(h/2R) for h/2R = 1.5,2.0,...,5.5,10* are listed
in Table 3. The last term marked with “+” in Table 3 is obtained from a substitution of ¢ = psin® f,
0> = pcos’? i, 2 = psin fcos f into Egs. (43) and (44). Clearly, when /2R — oo, the calculated results
should approach the single circular arc crack case. As before, this agreement is confirmed from the tabu-
lated results.

4. Conclusions

Since no integration rule was suggested to evaluate a singular integral along the curve, previously one
had to use the boundary element method to solve the curved crack problem. In this case, some computation
error may exist when discretization is performed along the curve configuration. Meantime, the discreti-
zation is generally a complicated work in computation. In the present study, we avoid using the discreti-
zation and the curve length method is introduced. Many integration rules used on a real axis can be used to
the multiple curved crack problems. This will considerably reduce effort to get the final numerical results.

In this paper, the mapping relation for crack-1 is expressed by the function #(s;). In computation,
one should find the following items: (a) the length ay, (b) the mapping relation ¢, and sy, =
ajcos((m — 0.5)n/M,), (m=1,2,...,M,). In fact, for any complicated geometry of crack, the length a; can
be evaluated by a numerical integration. Secondly, the relation between ¢, ,, and s, , can easily be found by
using a numerical iteration procedure. From the knowledge of author, the mentioned computation can be
performed on computer without any difficulty.
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