
International Journal of Solids and Structures 41 (2004) 3505–3519

www.elsevier.com/locate/ijsolstr
Singular integral equation method for the solution
of multiple curved crack problems

Y.Z. Chen *

Division of Engineering Mechanics, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China

Received 4 August 2003; received in revised form 26 January 2004

Available online 5 March 2004

Abstract

A method based on complex potentials for distributions of dislocations along curved cracks is used to solve multiple

curved crack problems in plane elasticity. The method allows evaluation of the interaction between curved cracks. A

crack problem is reduced to a system of singular integral equations and the crack curve length is taken as the coordinate

in the associated integral equations. A crack is then mapped on the real axis in an interval ð�a; aÞ, where 2a is the length
of crack and the original singular integral equations are transformed accordingly. The method allows cracks with a

general curvature and is not restricted to slightly curved crack configurations. The resulting singular integral equation

system is solved through Gauss quadrature. A few numerical examples of problems with two cracks are given and crack

interaction, i.e., the shielding effect of a curved crack surrounding by another, is also studied.

� 2004 Published by Elsevier Ltd.
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1. Introduction

The curved crack problem in plane elasticity is a special case of problems that are solvable with the

boundary integral equations (BIE). The integral equations for such a problem contain a dislocation dis-

tribution or a dislocation doublet along a curved crack path and may be expressed in the general form
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Kðt; t0Þf ðtÞdt ¼ pðt0Þ; ðor pðt0Þ þ c; t0 2 LÞ; ð1Þ
where f ðtÞ is the unknown function, Kðt; t0Þ the kernel, and pðt0Þ the right hand term in the equation. In Eq.

(1), ‘‘L’’ represents the crack curve configuration. Clearly, the nature of the kernel Kðt; t0Þ depends on the
explicit choice of the functions f ðtÞ and pðt0Þ. The possible choices of f ðtÞ and pðt0Þ are listed in Table 1.

In the case of WS (weakly singular) integral equations, the dislocation distribution is taken as the un-

known function, and the resultant force as the right hand term (Cheung and Chen, 1987). The explicit
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Table 1

Classification of the integral equations in curved crack problem

Type f ðtÞ pðt0Þ Property of Kðt; t0Þ
(a) WS Dislocations Resultant forces Weakly singular (log singular)

(b) S1 Dislocations Tractions Cauchy singular

(c) S2 Displacement jump (COD) Resultant forces Cauchy singular

(d) HS Displacement jump (COD) Tractions Hypersingular
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solution of the integral equation, whose kernel is logarithmic, is unknown, but it can however be solved
numerically with the boundary element method.

In the case of S1 (Cauchy singular) integral equations, the dislocation distribution is taken as the un-

known function, and the traction applied on the crack face as the right hand term. Many researchers have

studied this case (Savruk, 1981; Chen et al., 1991) and some have used perturbation methods to solve the

problem (Cotterell and Rice, 1980; Dreilich and Gross, 1985; Martin, 2000). In general, the range of

application of previously obtained solutions for the curved crack problem is however not satisfactory. For

example, in the perturbation method, a curved crack is generally projected on the real axis. Clearly, this

formulation is only valid for slightly curved cracks. However, for complicated multiple crack cases, this
assumption is no longer valid.

For the type S2 (Cauchy singular) integral equations, the displacement jump is the unknown function,

and the resultant force on the crack face is the right hand term (Chen, 1999). There is no known explicit

integration rule for the singular integral
R
L
gðtÞ dt
t�t0

, where both ‘‘t’’ and ‘‘t0’’ are located on the curve ‘‘L’’, and
the numerical solution for a singular integral equation of this type is complicated.

For the type HS (hypersingular) integral equations, the displacement jump is taken as the unknown

function and the traction on the crack face as the right hand term (Chen, 1993; Lin�kov, 1999; Mogi-

levskaya, 2000). Generally, the integration rule for the hypersingular integral along a curve is rather
complicated.

In this paper, we will discuss the numerical solutions for the multiple curved crack problems. After

placing some dislocation distributions along the curved cracks, relevant complex potentials can be for-

mulated. In addition, the mutual influence between the curved cracks can be achieved from the obtained

complex potentials. Instead of solving the original multiple curved crack problem, the governing equations

are transformed to a system of the singular integral equations of the S1 type. A new method for cracks of
     N 
T z+dz  

z 
α  

     N 
T 

to  

to + dto

θo

y 

o x

tC

C tB  

 

B 

t L 

θ  

Fig. 1. The curved crack configuration and the curve length coordinate.
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general curvature that is not restricted to slightly curved cracks is developed. The crack length is taken as

the coordinate along the crack and the crack configuration is mapped on a real axis in an interval ð�a; aÞ
(Fig. 1). The proposed method is called the �curve length method� hereafter. A striking advantage of the

method is that the integral defined on a curve can be converted to a relevant integral defined on the real
axis. Therefore, known integration rules can be used for problem solution. Finally, several numerical

examples are given to illustrate the efficiency of the method presented.
2. Singular integral equation for multiple curved crack problems

The fundamentals of the complex variable function method, which plays an important role in plane

elasticity, are briefly introduced in what follows. In the method, the stresses (rx; ry ; rxy), the resultant forces
(X ; Y ) and the displacements (u; v) are expressed in terms of the complex potentials /ðzÞ and wðzÞ such that

(Muskhelishvili, 1953)
rx þ ry ¼ 4 ReUðzÞ;

ry � irxy ¼ 2ReUðzÞ þ zU0ðzÞ þ WðzÞ; ð2Þ

f ¼ �Y þ iX ¼ /ðzÞ þ z/0ðzÞ þ wðzÞ; ð3Þ

2Gðuþ ivÞ ¼ j/ðzÞ � z/0ðzÞ � wðzÞ; ð4Þ
where G is the shear modulus of elasticity, j ¼ ð3� mÞ=ð1þ mÞ in the plane stress problem, j ¼ 3� 4m in the

plane strain problem, and m is the Poisson�s ratio. In Eq. (2) we denote UðzÞ ¼ /0ðzÞ, WðzÞ ¼ w0ðzÞ.
If the tractions applied on the curved crack are the same in magnitude and opposite in direction for the

upper and lower crack faces, the complex potentials caused by a dislocation distribution g0ðtÞ along the
curved crack ‘‘L’’ can be expressed by (Savruk, 1981; Chen, 1995)
UðzÞ ¼ /0ðzÞ ¼ 1

2p

Z
L

g0ðtÞdt
t � z ;

WðzÞ ¼ w0ðzÞ ¼ 1

2p

Z
L

g0ðtÞd�t
t � z � 1

2p

Z
L

�tg0ðtÞdt
ðt � zÞ2

; ð5Þ
where
g0ðtÞ ¼ � 2Gi
j þ 1

dfuðtÞ þ ivðtÞgj
dt

; ðt 2 LÞ: ð6Þ
In Eq. (6), ðuðtÞ þ ivðtÞÞjð¼ ðuðtÞ þ ivðtÞÞþ � ðuðtÞ þ ivðtÞÞ�Þ stands for the jump value of the displacements,

and ðuðtÞ þ ivðtÞÞþððuðtÞ þ ivðtÞÞ�Þ denotes the displacements at a point ‘‘t’’ of the upper (lower) face of the
crack ‘‘L’’ (Fig. 1). The derivative dfg=dt is defined (as a derivative) in a specified direction (DISD) (Chen,

1995).

Clearly, from the single-valuedness condition of displacements, the following constraint equation is

obtained
Z
L
g0ðtÞdt ¼ 0: ð7Þ
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Two cases for the traction influence of the distributed dislocation will be investigated below. The first case is

the traction influence on the crack faces themselves (Fig. 1). According to Savruk (1981) and Chen (1995),

the traction on a point t0 of crack face is
Nðt0Þ þ iT ðt0Þ ¼
1

p

Z
L

g0ðtÞdt
t � t0

þ 1

2p

Z
L
K1ðt; t0Þg0ðtÞdt þ

1

2p

Z
L
K2ðt; t0Þg0ðtÞd�t; ðt0 2 LÞ; ð8Þ
where ‘‘L’’ denotes the curved crack configuration and
K1ðt; t0Þ ¼
d

dt0
ln
t0 � t
�t0 ��t

� �
¼ � 1

t � t0
þ 1

�t ��t0

d�t0
dt0

;

K2ðt; t0Þ ¼ � d

dt0

t0 � t
�t0 ��t

� �
¼ 1

�t ��t0
� t � t0
ð�t ��t0Þ2

d�t0
dt0

:

ð9Þ
In Eq. (9) the expression dfg=dt0 should be defined as a DISD-derivative. Clearly, only the first integral

in Eq. (8) is singular. Secondly, after assuming dt0 ¼ ds0 expðih0Þ in Fig. 1, we have d�t0=dt0 ¼ expð�2ih0Þ.
Therefore, the second and the third integrals in Eq. (8) also depend on the direction of the segment

t0; t0 þ dt0.
Simply by making the following substitutions: (a) t0 ! z, (b) dt0 ! dz in Eqs. (8) and (9), the traction

influence at a point ‘‘z’’ on the segment z; zþ dz in Fig. 1 can be expressed as
NðzÞ þ iT ðzÞ ¼ 1

p

Z
L

g0ðtÞdt
t � z þ 1

2p

Z
L
K1ðt; zÞg0ðtÞdt þ

1

2p

Z
L
K2ðt; zÞg0ðtÞd�t;

ðat a point \z" on the segment z; zþ dz; Fig: 1Þ; ð10Þ
where ‘‘L’’ denotes the curved crack configuration and
K1ðt; zÞ ¼ � 1

t � zþ
1

�t � �z
d�z
dz

;

K2ðt; zÞ ¼
1

�t � �z
� t � z
ð�t � �zÞ2

d�z
dz

:
ð11Þ
When the integration for ‘‘t’’ is performed along the curve ‘‘L’’ in Eq. (10), the observation point ‘‘z’’ is
different from the point ‘‘t’’, and thus, all integrals in Eq. (10) are regular. Note that, in Eq. (11)

d�z=dzð¼ expð�2iaÞÞ denotes a DISD-derivative rather than a derivative of an analytic function (Fig. 1).

For a single curved crack case, once the solution for g0ðtÞ is obtained from Eqs. (7) and (8), the stress

intensity factor (SIF) at the left crack tip B in Fig. 1 can be evaluated by (Savruk, 1981; Chen, 1995)
ðK1 � iK2ÞB ¼
ffiffiffiffiffiffi
2p

p
Lim
t!tB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � tBj j

p
g0ðtÞ: ð12Þ
Similarly, for the right crack tip C we have
ðK1 � iK2ÞC ¼ �
ffiffiffiffiffiffi
2p

p
Lim
t!tC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � tCj j

p
g0ðtÞ: ð13Þ
Let us consider the case of two curved cracks (Fig. 2). The problem, where tractions on the crack faces

are given can be modeled by assuming a dislocation distribution g01ðt1Þ along the curved crack-1 and g02ðt2Þ
along the curved crack-2 and using superposition. The tractions on the crack-1 are composed of two parts,

which are derived from the dislocation distributions. The first part is obtained from the dislocation dis-
tribution g01ðt1Þ along the curved crack-1, using Eq. (8). The second part is obtained from the dislocation

distribution g02ðt2Þ along the curved crack-2, using Eq. (10).
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Fig. 2. Formulation of multiple curved crack problem.
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Finally, superposition of the two parts results in a singular integral equation for crack-1 as follows
1

p

Z
L1

g01ðt1Þdt1
t1 � t10

þ 1

2p

Z
L1

K1ðt1; t10Þg01ðt1Þdt1 þ
1

2p

Z
L1

K2ðt1; t10Þg01ðt1Þd�t1 þ
1

p

Z
L2

g02ðt2Þdt2
t2 � t10

þ 1

2p

Z
L2

K1ðt2; t10Þg02ðt2Þdt2 þ
1

2p

Z
L2

K2ðt2; t10Þg02ðt2Þd�t2 ¼ N1ðt10Þ þ iT1ðt10Þ ðt10 2 L1Þ; ð14Þ
where N1ðt10Þ þ iT1ðt10Þ denotes the tractions applied at the point t10 of crack-1, and
K1ðt1; t10Þ ¼ � 1

t1 � t10
þ 1

�t1 ��t10

d�t10
dt10

; K2ðt1; t10Þ ¼
1

�t1 ��t10
� t1 � t10
ð�t1 ��t10Þ2

d�t10
dt10

; ð15Þ

K1ðt2; t10Þ ¼ � 1

t2 � t10
þ 1

�t2 ��t10

d�t10
dt10

; K2ðt2; t10Þ ¼
1

�t2 ��t10
� t2 � t10
ð�t2 ��t10Þ2

d�t10
dt10

: ð16Þ
Note that, the first three integrals in Eq. (14) represent the influence on the crack-1 caused by the dislo-
cations on the crack itself, and the second three integrals in Eq. (14) represent the influence from the

dislocations on crack-2. Note that, except for the first integral in Eq. (14), all integrals in Eq. (14) are

regular. In addition, the single-valuedness condition for crack-1 will lead to
Z
L1

g0ðt1Þdt1 ¼ 0: ð17Þ
Similarly, a singular integral equation can be formulated for the crack-2 in Fig. 2
1

p

Z
L2

g02ðt2Þdt2
t2 � t20

þ 1

2p

Z
L2

K1ðt2; t20Þg02ðt2Þdt2 þ
1

2p

Z
L2

K2ðt2; t20Þg02ðt2Þd�t2 þ
1

p

Z
L1

g01ðt1Þdt1
t1 � t20

þ 1

2p

Z
L1

K1ðt1; t20Þg01ðt1Þdt1 þ
1

2p

Z
L1

K2ðt1; t20Þg01ðt1Þd�t1 ¼ N2ðt20Þ þ iT2ðt20Þ; ðt20 2 L2Þ; ð18Þ
where N2ðt20Þ þ iT2ðt20Þ denotes the tractions applied at the point t20 of crack-2, and
K1ðt2; t20Þ ¼ � 1

t2 � t20
þ 1

�t2 ��t20

d�t20
dt20

; K2ðt2; t20Þ ¼
1

�t2 ��t20
� t2 � t20
ð�t2 ��t20Þ2

d�t20
dt20

; ð19Þ
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K1ðt1; t20Þ ¼ � 1

t1 � t20
þ 1

�t1 ��t20

d�t20
dt20

; K2ðt1; t20Þ ¼
1

�t1 ��t20
� t1 � t20
ð�t1 ��t20Þ2

d�t20
dt20

: ð20Þ
As before, the relevant constraint equation is as follows
Z
L2

g0ðt2Þdt2 ¼ 0: ð21Þ
In the case of two curved cracks, the first step is to obtain the solution for g01ðt1Þ and g02ðt2Þ from Eqs. (14),

(17), (18) and (21).
The curve length method is used to solve the integral equations numerically and the configuration of

crack-1 is mapped on the real axis ‘‘s1’’ with a crack length ‘‘2a1’’ (Fig. 2). Clearly, this is a one-to-one

mapping, i.e., for a point ‘‘t1’’ on the curved crack, there is a mapping point ‘‘s1’’ on the real axis, and the

inverse is also true.

The mapping is expressed by the function t1ðs1Þ. After mapping, the function g01ðt1Þ is rewritten in the

form
g01ðt1Þ ¼ h1ðs1Þ ¼
H1ðs1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � s21

p ; ðwhere H1ðs1Þ ¼ H1rðs1Þ þ iH1iðs1ÞÞ: ð22Þ
In Eq. (22), the assumed expression h1ðs1Þ ¼ H1ðs1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � s21

p
is obtained from the behavior of the dislo-

cation distribution in the vicinity of a crack tip.

Similar, after using the substitution t2ðs2Þ, the function g02ðt2Þ can be rewritten as
g02ðt2Þ ¼ h2ðs2Þ ¼
H2ðs2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22 � s22

p ; ðwhere H2ðs2Þ ¼ H2rðs2Þ þ iH2iðs2ÞÞ: ð23Þ
In the curve length method, all integrals in Eqs. (14), (17), (18) and (21) can be transformed to integrals on

the real axis. It is sufficient to describe three of them as follows. The first integral in Eq. (14) may be

rewritten in the form
I1 ¼
1

p

Z
L1

g01ðt1Þdt1
t1 � t10

¼ 1

p

Z a1

�a1

H1ðs1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � s21

p Aðs1; s10Þ
s1 � s10

ds1; ð24Þ
where
Aðs1; s10Þ ¼
ðs1 � s10Þdt1
ðt1 � t10Þds1

: ð25Þ
The second integral in Eq. (14) can be written as
I2 ¼
1

2p

Z
L1

K1ðt1; t10Þg01ðt1Þdt1 ¼
1

2p

Z a1

�a1

H1ðs1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � s21

p Bðs1; s10Þds1; ð26Þ
where
Bðs1; s10Þ ¼ K1ðt1; t10Þ
dt1
ds1

: ð27Þ
Thirdly, the integral in Eq. (17) can be expressed by
I3 ¼
Z
L1

g01ðt1Þdt1 ¼
Z a1

�a1

H1ðs1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a21 � s21

p Cðs1Þds1; ð28Þ
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where
Cðs1Þ ¼
dt1
ds1

: ð29Þ
For numerical solution of the integral equation, the following Gauss integration rules for a regular function
HðsÞ are introduced (Erdogan et al., 1973; Savruk, 1981)
1

p

Z a

�a

HðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p
ðs� s0;mÞ

¼ 1

M

XM
j¼1

HðsjÞ
sj � s0;m

; ð30Þ

1

p

Z a

�a

HðsÞdsffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � s2

p ¼ 1

M

XM
j¼1

HðsjÞ; ð31Þ
where M is some integer, and
sj ¼ a cos
ðj� 0:5Þp

M
ðj ¼ 1; 2; . . . ;MÞ; ð32Þ

s0;m ¼ a cos
mp
M

ðm ¼ 1; 2; . . . ;M � 1Þ: ð33Þ
Note that, the integration rule (30) is only valid for the particular points s0;m ¼ a cosðmp=MÞ ðm ¼
1; 2; . . . ;M � 1Þ.

If the HðsjÞ ðj ¼ 1; 2; . . . ;MÞ values are known beforehand, the Hð�aÞ and HðaÞ values can be obtained

from the following extrapolation formulae (Savruk, 1981)
Hð�aÞ ¼ 1

M

XM
j¼1

ð�1ÞjþMHðsjÞ tanðð2j� 1Þp=4MÞ;

HðaÞ ¼ 1

M

XM
j¼1

ð�1Þjþ1HðsjÞ cotðð2j� 1Þp=4MÞ:
ð34Þ
The numerical solution for the multiple curved crack problems is composed of the following steps.

(a) Depending on the crack lengths, M1 is assumed for the number of abscissas for crack-1. Similarly, M2 is

assumed for crack-2.

(b) After substituting Eqs. (22) and (23) into Eqs. (14), (17), (18) and (21), and using the integration rules

(30) and (31), the latter can be reduced to a system of algebraic equations with respect to the following
unknowns
R

Re

ðK
efH1ðs1;mÞgImfH1ðs1;mÞg with s1;m ¼ a1 cos
ðm� 0:5Þp

M1

ðm ¼ 1; 2; . . . ;M1Þ;

fH2ðs2;mÞgImfH2ðs2;mÞg with s2;m ¼ a2 cos
ðm� 0:5Þp

M2

ðm ¼ 1; 2; . . . ;M2Þ:
ð35Þ
Furthermore, a solution for H1ðs1;mÞ ðm ¼ 1; 2; . . . ;M1Þ and H2ðs2;mÞ ðm ¼ 1; 2; . . . ;M2Þ is obtainable.

(c) From the obtained H1ðs1;mÞ and H2ðs2;mÞ, the extrapolation formulae Eq. (34) yield H1ð�a1Þ, H1ða1Þ,

H2ð�a2Þ and H2ða2Þ.
(d) From Eqs. (12) and (13), the stress intensity factor (SIF) at the crack tips B1 and C1 of crack-1 in Fig. 2

can be evaluated by
1 � iK2ÞB1 ¼
ffiffiffiffiffi
p
a1

r
H1ð�a1Þ; ðK1 � iK2ÞC1

¼ �
ffiffiffiffiffi
p
a1

r
H1ða1Þ: ð36Þ
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Similarly, the stress intensity factor (SIF) at the crack tips B2 and C2 of crack-2 in Fig. 2 can be evaluated

by
ðK

. 3. Fi

sition,

lined r
1 � iK2ÞB2 ¼
ffiffiffiffiffi
p
a2

r
H2ð�a2Þ; ðK1 � iK2ÞC2

¼ �
ffiffiffiffiffi
p
a2

r
H2ða2Þ: ð37Þ
For the circular arc crack case, for example, under the action of remote the stress r1
xy the COD (crack

opening displacement) may be negative for certain values, indicating overlapping of the crack faces.

Naturally, in this case, compatibility is violated. In this paper, a non-overlapping condition in terms of

COD is introduced. For a curved crack case, once the function g0ðtÞ is obtained from the numerical

solution, the COD function at a point ‘‘t’’, Fig. 1, can be obtained from Eq. (6)
uðtÞ þ ivðtÞ ¼ � ðj þ 1Þ
2Gi

Z t

tB

g0ðtÞdt: ð38Þ
Note that in Eq. (38) the subscript ‘‘j’’ has been omitted for the sake of simplification. A further expression

for COD is introduced
u1ðtÞ þ iv1ðtÞ ¼ ðuðtÞ þ ivðtÞÞe�ihðtÞ; ð39Þ

where hðtÞ denotes the tangent angle at the point ‘‘t’’ (Fig. 1). Clearly, the non-overlapping condition for

COD can be expressed as
v1ðtÞP 0: ð40Þ

This condition is checked in the numerical examples.
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Before studying the numerical examples, a known result is used. For a single circular arc crack with the

remote traction case of r1
x , r

1
y and r1

xy , the SIFs at the crack tips ‘‘A’’ and ‘‘B’’ in Fig. 3(e) can be expressed

by (Cotterell and Rice, 1980)
K1A ¼ f1A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K1B ¼ f1B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; ð41Þ
K2A ¼ f2A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2B ¼ f2B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; ð42Þ
where
f1A
f1B

¼
r1
y þ r1

x

2

	 
�
�

r1
y � r1

x

2

	 

sin2ða=2Þ cos2ða=2Þ

�
cosða=2Þ

1þ sin2ða=2Þ

þ
r1
y � r1

x

2

� �
cosð3a=2Þ � r1

xyfsinð3a=2Þ þ sin3ða=2Þg; ð43Þ
f2A
f2B

¼ �
r1
y þ r1

x

2

	 
�
�

r1
y � r1

x

2

	 

sin2ða=2Þ cos2ða=2Þ

�
sinða=2Þ

1þ sin2ða=2Þ

�
r1
y � r1

x

2

� �
sinð3a=2Þ þ r1

xyfcosð3a=2Þ þ cosða=2Þ sin2ða=2Þg: ð44Þ
3. Numerical examples

Some numerical examples are given to illustrate the results of the method presented.

Example 1. In the first example, two circular arc cracks on the same circle are subjected to the remote

tension r1
x ¼ r1

y ¼ p (Fig. 3(a)). In the computation, M1 ¼ M2 ¼ 45 in Eq. (35) is used. The calculated

results for the SIFs at the crack tips ‘‘A’’ and ‘‘B’’ are expressed as
K1A ¼ F1Aða=b; bÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2A ¼ F2Aða=b; bÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
;

K1B ¼ F1Bða=b; bÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2B ¼ F2Bða=b; bÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p ð45Þ
and are plotted in Figs. 4 and 5. The results show that the stress intensity factor at the inner crack tip ‘‘B’’ is
generally higher than at the outer crack tip ‘‘A’’. For example, in the case of b ¼ 30� and a=b ¼ 0:9, the
results F1A ¼ 0:8919 and F1B ¼ 1:2424 is obtained.

Example 2. In the second example, two stacked circular cracks are subjected to the remote tension
r1
x ¼ r1

y ¼ p (Fig. 3(b)). In the computation, M1 ¼ M2 ¼ 75 in Eq. (35) is used. The calculated results for

the SIFs at the crack tips ‘‘B’’ and ‘‘D’’ are expressed as
K1B ¼ F1Bðh=2R; aÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2B ¼ F2Bðh=2R; aÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
;

K1D ¼ F1Dðh=2R; aÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2D ¼ F2Dðh=2R; aÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p ð46Þ
and are plotted in Fig. 6. Since there is no symmetry in the y-direction, the severity at the crack tip ‘‘D’’ is
different from that at the tip ‘‘B’’. For example, in the case of a ¼ p=2 and h=2R ¼ 0:2, we have

F1D ¼ 0:5728, F2D ¼ 0:4409 and F1B ¼ 0:1463, F2B ¼ 0:0685. That is to say, crack extension is generally
initiated at the crack tip ‘‘D’’. If the distance between the two cracks is increased, the difference between the
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Fig. 4. Non-dimensional SIFs F1Aða=b;bÞ and F1Bða=b;bÞ for the multiple curved cracks (see Fig. 3(a) and Eq. (45)).
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Fig. 5. Non-dimensional SIFs F2Aða=b;bÞ K2B ¼ F2Bða=b;bÞ for the multiple curved cracks (see Fig. 3(a) and Eq. (45)).
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stress intensity factors at the crack tips ‘‘D’’ and ‘‘B’’, respectively, is smaller. For example, in the case of

a ¼ p=2 and h=2R ¼ 1:0, we have F1D ¼ 0:5653, F2D ¼ 0:4319 and F1B ¼ 0:5377, F2B ¼ 0:3631.

Example 3. In the third example, two circular arc cracks are subjected to the remote tension r1
x ¼ r1

y ¼ p
(Fig. 3(c)). The spanning angle of the first crack is p=3, and of the second is 2a. In the computation, we take
M1 ¼ 35, M2 ¼ M1 �

ffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
, where a1 ða2Þ is the half-length of the first (second) crack. The calculated

results for the SIFs at the crack tips ‘‘A’’, ‘‘B’’, ‘‘C’’ and ‘‘D’’ are expressed as
K1A ¼ F1AðaÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sinðp=6Þ

p
; K2A ¼ F2AðaÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sinðp=6Þ

p
;

K1B ¼ F1BðaÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sinðp=6Þ

p
; K2B ¼ F2BðaÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sinðp=6Þ

p
;

K1C ¼ F1CðaÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2C ¼ F2CðaÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
;

K1D ¼ F1DðaÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2D ¼ F2DðaÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
ð47Þ
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and the results are plotted in Fig. 7. Since the spanning angle of the second crack ð2aÞ is varied, the

shielding effect for the first crack is easily seen. For example, in the case of a ¼ p=18 (¼ 10�), we have

F1A ¼ 0:9078, F2A ¼ �0:2518, F1B ¼ 0:9145 and F2B ¼ 0:2692. However, in the case of a ¼ 7p=18 (¼ 70�), we
have F1A ¼ 0:7470, F2A ¼ �0:4642, F1B ¼ 0:1248 and F2B ¼ 0:1935. For the two cases, the reduction factor

for F1B is 0.1365 (¼ 0.1248/0.9145). The result shows that as a smaller curved crack is surrounded by a

larger curved crack, the severity at the crack tips of the smaller crack is not significant.

Example 4. In the fourth example, two line-circular arc cracks are subjected to the remote tension
r1
x ¼ r1

y ¼ p (Fig. 3(d)). The geometry of the first crack is kept constant, and the spanning angle a of the

second crack changes from 15�; 30�; . . . ; 180�. In the computation, we take M1 ¼ 35, M2 ¼ M1 �
ffiffiffiffiffiffiffiffiffiffiffi
a2=a1

p
,

where a1 ða2Þ is the half-length of the first (second) crack. The calculated results for the SIFs at the crack

tips ‘‘A’’,‘‘B’’, ‘‘C’’ and ‘‘D’’ are expressed as
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Fig. 3(c) and Eq. (47)).
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K1A ¼ F1AðaÞp
ffiffiffiffiffiffi
pb

p
; K2A ¼ F2AðaÞp

ffiffiffiffiffiffi
pb

p
;

K1B ¼ F1BðaÞp
ffiffiffiffiffiffi
pb

p
; K2B ¼ F2BðaÞp

ffiffiffiffiffiffi
pb

p
;

K1C ¼ F1CðaÞp
ffiffiffiffiffiffi
pb

p
; K2C ¼ F2CðaÞp

ffiffiffiffiffiffi
pb

p
;

K1D ¼ F1DðaÞp
ffiffiffiffiffiffi
pb

p
; K2D ¼ F2DðaÞp

ffiffiffiffiffiffi
pb

p
ð48Þ
and the results are plotted in Fig. 8. Since the spanning angle of the second crack ðaÞ is varied, the shielding
effect for the first crack is easily seen. However, the F1B value is negative for a spanning angle greater than

approximately a ¼ 6p=12 (¼ 90�) and the solution is thus no longer valid in this case. For positive SIFs, it is

seen that the shielding effect at the crack tip ‘‘A’’ is much weaker than that at the crack tip ‘‘B’’.

Example 5. In the example, we assume that the spanning angle of the arcs is 2a ¼ p=2 (¼ 90�) (Fig. 3(e)) the
distance between the two arc centers is denoted by ‘‘h’’, and M1 ¼ M2 ¼ 75 is taken. Two loading cases: (a)

r1
x ¼ r1

y ¼ p, (b) r1
y ¼ p are considered. For both cases the calculated SIFs at the crack tip ‘‘A ’’ are

expressed by
K1A ¼ F1Aðh=2RÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2A ¼ F2Aðh=2RÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
: ð49Þ
The calculated results of F1Aðh=2RÞ and F2Aðh=2RÞ for h=2R ¼ 1:5; 2:0; . . . ; 5:5; 104 are listed in Table 2. The

last term marked with ‘‘�’’ in Table 2 is obtained from Eqs. (43) and (44). As expected, when h=2R! 1,
the calculated results should approach the single circular arc crack case. This agreement is confirmed by the

tabulated results.

With h=2R ¼ 1:5, 2a ¼ p=2 and r1
y ¼ p, for the lower crack in Fig. 3(e) the calculated COD functions

shown by Eq. (39) can be expressed as
u1 ¼
ðj þ 1Þp

2G
u1 � ðs=aÞ; v1 ¼

ðj þ 1Þp
2G

v1� ðs=aÞ jsj < a ðwith a ¼ RaÞ; ð50Þ
where ‘‘s’’ is the coordinate of the point ‘‘t’’ in the curve length coordinate. The results (Fig. 9) shows that

the non-overlapping condition Eq. (40), is satisfied in present case.
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Table 2

Non-dimensional SIFs F1Aðh=2RÞ and F2Aðh=2RÞ for two circular arc cracks in a stacked position (see Fig. 3(e) and Eq. (49))

r1
x ¼ r1

y ¼ p, 2a ¼ p=2 case
h=2R 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 104 �

F1A 0.7876 0.7890 0.7933 0.7967 0.7990 0.8006 0.8017 0.8026 0.8032 0.8060 0.8059

F2A 0.2294 0.2763 0.2997 0.3117 0.3185 0.3227 0.3254 0.3272 0.3285 0.3339 0.3338

r1
y ¼ p, 2a ¼ p=2 case
h=2R 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 104 �

F1A 0.5225 0.5247 0.5298 0.5337 0.5364 0.5381 0.5394 0.5403 0. 5410 0.5440 0.5439

F2A 0.4987 0.5467 0.5717 0.5847 0.5919 0.5963 0.5992 0.6011 0. 6025 0.6081 0.6080

* From an exact solution for a single circular arc crack, shown by Eqs. (43) and (44).
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Fig. 9. Calculated results for CODs ðu1�; v1�Þ in case of h=2R ¼ 1:5, 2a ¼ p=2 and r1
y ¼ p (see Fig. 3(e) and and Eq. (50)).

Table 3

Non-dimensional SIFs F1Aðh=2RÞ, F1Bðh=2RÞ, F2Aðh=2RÞ and F2Bðh=2RÞ for two circular arc cracks in a stacked position with an inclined

tension ‘‘p’’ (see Fig. 3(e) and Eqs. (51) and (52))

2a ¼ p=3, b ¼ p=12
h=2R 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 104 �

F1A 0.4709 0.5140 0.5315 0.5397 0.5441 0.5466 0.5482 0.5493 0.5501 0.5532 0.5532

F1B 0.8791 0.8910 0.9005 0.9057 0.9087 0.9105 0.9116 0.9124 0.9130 0.9154 0.9154

F2A 0.5265 0.5797 0.5970 0.6040 0.6075 0.6094 0.6106 0.6113 0.6119 0.6138 0.6139

F2B )0.1413 )0.1894 )0.2079 )0.2159 )0.2200 )0.2224 )0.2238 )0.2248 )0.2254 )0.2280 )0.2280

2a ¼ p=3, b ¼ 3p=12
h=2R 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 104 �

F1A 0.0138 0.0591 0.0741 0.0806 0.0839 0.0858 0.0870 0.0877 0.0883 0.0904 0.0904

F1B 0.8302 0.8133 0.8122 0.8126 0.8131 0.8135 0.8137 0.8139 0.8141 0.8148 0.8149

F2A 0.4617 0.4928 0.5007 0.5036 0.5050 0.5057 0.5061 0.5064 0.5065 0.5072 0.5072

F2B 0.3087 0.2879 0.2774 0.2725 0.2699 0.2684 0.2674 0.2668 0.2663 0.2646 0.2646

* From an exact solution for a single circular arc crack, shown by Eqs. (43) and (44).
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Example 6. In the example, we assume that the spanning angle of the arcs is 2a ¼ p=3 ð¼ 60�Þ (Fig. 3(e)) the
distance between two arc centers is denoted by ‘‘h’’, and M1 ¼ M2 ¼ 75 is taken. The remote loading ‘‘p’’ is
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inclined an angle ‘‘b’’ with respect to the vertical direction. In this case, the calculated SIFs at the crack tip

‘‘A’’ and ‘‘B’’ are expressed by
K1A ¼ F1Aðh=2RÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2A ¼ F2Aðh=2RÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; ð51Þ

K1B ¼ F1Bðh=2RÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
; K2B ¼ F2Bðh=2RÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pR sin a

p
ð52Þ
and the results of F1Aðh=2RÞ, F1Bðh=2RÞ, F2Aðh=2RÞ and F2Bðh=2RÞ for h=2R ¼ 1:5; 2:0; . . . ; 5:5; 104 are listed
in Table 3. The last term marked with ‘‘�’’ in Table 3 is obtained from a substitution of r1

x ¼ p sin2 b,
r1
y ¼ p cos2 b, r1

xy ¼ p sin b cos b into Eqs. (43) and (44). Clearly, when h=2R! 1, the calculated results

should approach the single circular arc crack case. As before, this agreement is confirmed from the tabu-

lated results.
4. Conclusions

Since no integration rule was suggested to evaluate a singular integral along the curve, previously one

had to use the boundary element method to solve the curved crack problem. In this case, some computation

error may exist when discretization is performed along the curve configuration. Meantime, the discreti-

zation is generally a complicated work in computation. In the present study, we avoid using the discreti-

zation and the curve length method is introduced. Many integration rules used on a real axis can be used to

the multiple curved crack problems. This will considerably reduce effort to get the final numerical results.

In this paper, the mapping relation for crack-1 is expressed by the function t1ðs1Þ. In computation,

one should find the following items: (a) the length a1, (b) the mapping relation t1;m and s1;m ¼
a1 cosððm� 0:5Þp=M1Þ, ðm ¼ 1; 2; . . . ;M1Þ. In fact, for any complicated geometry of crack, the length a1 can
be evaluated by a numerical integration. Secondly, the relation between t1;m and s1;m can easily be found by

using a numerical iteration procedure. From the knowledge of author, the mentioned computation can be

performed on computer without any difficulty.
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